Layne B. Frechette

(207) 838-0670 \diamond laynefrechette@brandeis.edu Brandeis University, 415 South Street Waltham, MA 02453

EDUCATION

University of California, Berkeley (UC Berkeley)

August 2015 - May 2020

Ph.D., Physical Chemistry

Brown University

September 2011 - May 2015

Sc.B., Chemical Physics, magna cum laude

RESEARCH EXPERIENCE

Brandeis University Department of Physics

July 2022 - Present

Advisors: Michael Hagan and Aparna Baskaran

Simulations and theory of self-organization of passive objects in active fluids and virus self-assembly.

NIDDK, NIH Laboratory of Chemical Physics

August 2020 - May 2022

Advisor: Robert B. Best

Machine learning of Potts models to understand protein folding cooperativity.

UC Berkeley Department of Chemistry

October 2015 - July 2020

Advisor: Phillip L. Geissler

Thesis: "Chemical Transformations of Nanocrystals: Theory and Molecular Simulation."

Brown University Department of Chemistry

September 2013 - May 2015

Advisor: Richard M. Stratt

Honors Thesis: "Geodesic pathways through the potential energy landscape of liquid crystal formers."

Brown University Department of Physics

February 2012 - August 2013

Advisor: Derek M. Stein

Development of electrospray ionization mass spectrometry for DNA sequencing.

PUBLICATIONS AND PREPRINTS

- * Denotes equal contributions.
 - 1. <u>L.B. Frechette</u>, A. Baskaran, and M.F. Hagan. "Active noise-induced dynamic clustering of passive colloids." *arXiv*, doi: 10.48550/arXiv.2410.05555 (2024).
 - 2. D. Wang,* <u>L.B. Frechette</u>,* and R.B. Best. "On the role of native contact cooperativity in protein folding." *Proc. Natl. Acad. Sci. U.S.A.*, **121**, e231924912 (2024).
 - 3. A. Sciortino, H. Faizi, S. Uplap, <u>L. Frechette</u>, M.S.E. Peterson, P. Vlahovska, A. Baskaran, M.F. Hagan, and A. Bausch. "Active membrane deformations of a minimal synthetic cell." *bioRxiv*, doi:10.1101/2023.12.18.571643 (2023).
 - 4. G.R. Bowman, S.J. Cox, C. Dellago, K.H. DuBay, J.D. Eaves, D.A. Fletcher, <u>L.B. Frechette</u>, M. Grünwald, K. Klymko, J. Ku, A.K. Omar, E. Rabani, D.R. Reichman, J.R. Rogers, A.M. Rosnik, G.M. Rotskoff, A.R. Schneider, N. Schwierz, D.A. Sivak, S. Vaikuntanathan, S. Whitelam, and A. Widmer-Cooper. "Remembering the Work of Phillip L. Geissler: A Coda to His Scientific Trajectory." *Annu. Rev. Phys. Chem.*, **74**, 1-27 (2023).
 - J.C. Ondry, <u>L.B. Frechette</u>, P.L. Geissler, and A.P. Alivisatos. "Trade-offs between translational and orientational order in 2D superlattices of polygonal nanocrystals with differing edge count." *Nano Lett.*, 22, 389-395 (2021).

- 6. <u>L.B. Frechette</u>, C. Dellago, and P.L. Geissler. "Elastic forces drive nonequilibrium pattern formation in a model of nanocrystal ion exchange." *Proc. Natl. Acad. Sci. U.S.A.*, **118**, e2114551118 (2021).
- 7. <u>L.B. Frechette</u>, C. Dellago, and P.L. Geissler. "Origin of mean-field behavior in an elastic Ising model", *Phys. Rev. B* **102**, 024102 (2020).
- 8. <u>L.B. Frechette</u>, C. Dellago, and P.L. Geissler. "Consequences of lattice mismatch for phase equilibrium in heterostructured solids", *Phys. Rev. Lett.* **123**, 135701 (2019).
- M.R. Hauwiller, <u>L.B. Frechette</u>, M.R. Jones, J.C. Ondry, G.M. Rotskoff, P. Geissler, and A.P. Alivisatos. "Unraveling kinetically-driven mechanisms of gold nanocrystal shape transformations using graphene liquid cell electron microscopy", *Nano Lett.* 18, 5731-5737 (2018).
- 10. X. Ye,* M.R. Jones,* <u>L.B. Frechette</u>, Q. Chen, A.S. Powers, P. Ericus, G. Dunn, G.M. Rotskoff, S.C. Nguyen, V.P. Adiga, A. Zettl, E. Rabani, P.L. Geissler, A.P. Alivisatos, "Single-particle mapping of nonequilibrium nanocrystal transformations", *Science* **354**, 874-877 (2016).
- 11. <u>L. Frechette</u> and R.M. Stratt, "The inherent dynamics of isotropic- and nematic-phase liquid crystals", *J. Chem. Phys.* **144**, 234505 (2016).
- 12. <u>L. Frechette</u>, D. Jacobson, and R.M. Stratt, "Erratum: "The inherent dynamics of a molecular liquid: Geodesic pathways through the potential energy landscape of a liquid of linear molecules" [J. Chem. Phys. 140, 174503 (2014)]", *J. Chem. Phys.* 141, 209902 (2014).

FELLOWSHIP & AWARDS

- Mentee participant in the 2024 Future Faculty Workshop: The Chemistry, Physics, Engineering and Biology of Soft Materials
- Berkeley Statistical Mechanics Meeting Poster Prize, 2019
- Erwin Schrödinger Institute Junior Research Fellowship, 2018
- Outstanding Graduate Student Instructor Award, UC Berkeley, 2017 2018
- Clapp Prize for Outstanding Undergraduate Thesis, Brown Department of Chemistry, 2015
- Karen T. Romer Undergraduate Teaching and Research Award, Brown University, 2014

TEACHING EXPERIENCE

Adjunct Instructor, Montgomery College

- CHEM 131D: Principles of Chemistry I Discussion, Fall 2021
- CHEM 131L: Principles of Chemistry I Laboratory, Fall 2021

Graduate Student Instructor, UC Berkeley

- CHEM 220A: Thermodynamics and Statistical Mechanics, Fall 2017
- CHEM 120B: Physical Chemistry, Fall 2016
- CHEM 3AL: Organic Chemistry Laboratory, Fall 2015

Certifications

- Certificate of Training, 'Scientists Teaching Science', National Institutes of Health, 2020
- UC Berkeley Certificate in Teaching and Learning in Higher Education, 2020

MENTORING

- Smriti Pradhan, Physics Graduate Student, Brandeis University, 2023-
- Naren Sundararajan, Physics Graduate Student, Brandeis University, 2023-
- Sarvesh Uplap, Physics Graduate Student, Brandeis University, 2022-2023

• David Wang, Biophysics Graduate Student, Johns Hopkins University/NIH, 2022-

ORAL PRESENTATIONS

- "The interplay between activity and elasticity in model active composites", APS March Meeting 2024
- "Modeling Active Composites", APS March Meeting 2023
- "How ion exchange puts the squeeze on nanocrystals", Phillip Geissler Memorial Symposium, January 2023
- "Mean-field critical behavior and dynamics of a model lattice-mismatched solid", Northern California Theoretical Chemistry Meeting, Contributed Talk, May 2019
- "Modulated order and unconventional coexistence in a model of lattice-mismatched solids", APS March Meeting, Contributed Talk, March 2019
- "Exploring the phase behavior of an elastic Ising model for cation exchange", Pitzer Center Theoretical Chemistry Seminar, April 2018
- "The inherent dynamics of liquid crystal formers", Berkeley Statistical Mechanics Seminar, April 2016

POSTER PRESENTATIONS

- "Modeling Active Composites with Spatiotemporally Correlated Noise", Berkeley Statistical Mechanics Meeting, January 2024
- "Inverstigating fold-switching proteins with coevolutionary models", NIDDK Scientific Conference (Virtual), April 2021
- "Evoluionary models of fold-switching proteins", Annual Meeting of the Biophysical Society (Virtual), February 2021
- "Elastic phase behavior significantly biases the kinetics of model ion-exchange reactions", Berkeley Statistical Mechanics Meeting, January 2019
- "Exploring the phase behavior of an elastic Ising model for cation exchange", West Coast Theoretical Chemistry Symposium, March 2018
- "The statistical mechanics of ion exchange in nanocrystals", Berkeley Statistical Mechanics Meeting, January 2018
- "A simple model for cation exchange in nanocrystals", Chemistry and Physics of Liquids Gordon Research Conference, August 2017
- "Nonequilibrium shape transformations of etched nanocrystals", Berkeley Statistical Mechanics Meeting, January 2017

PROFESSIONAL SERVICE

- Organized and served as chair for APS March Meeting 2024 focus session: "Active Self-Assembly: Models and Model Systems"
- Served as a reviewer for Journal of Chemical Physics, Nano Letters, Soft Matter, and Communications Biology
- Assisted with reviews for eLife, Nature Communications, Biophysical Journal, and PLOS Computational Biology

OUTREACH

• Helped foster a supportive peer network for incoming chemistry graduate students through the pilot CHEMentor program

- Taught a two-hour course on computational chemistry to high school students through the Berkeley Splash program
- \bullet Co-organized and led the IRG 2 (Soft Active Materials) Workshop for the Brandeis University MRSEC
- \bullet Serve as head of the Brandeis MRSEC trainee committee