Mean-field critical behavior and dynamics of a model lattice-mismatched solid

Layne Frechette
Northern California Theoretical Chemistry Meeting
May 19th, 2019

Cation exchange produces patterned nanocrystal heterostructures

Cation exchange produces patterned nanocrystal heterostructures

Elastic strain plays an important role

Elastic strain plays an important role

A simple model describes elastic coupling to compositional heterogeneity

Atom at each lattice site r has an identity

$$\sigma_{\mathbf{r}} = +1$$
 (A) or $\sigma_{\mathbf{r}} = -1$ (B)

and a displacement u_r away from its ideal lattice position.

Locally preferred bond length

$$\ell(\mathbf{r},\mathbf{r}') = \bar{\ell} + \frac{\Delta}{2}(\sigma_{\mathbf{r}} + \sigma'_{\mathbf{r}})$$

depends on atoms' identities.

Energy is quadratic in displacements:

$$\mathcal{H} = rac{K}{4} \sum_{\langle \mathbf{r}, \mathbf{r}'
angle} \left[\left| \left(\mathbf{r} + \mathbf{u_r}
ight) - \left(\mathbf{r}' + \mathbf{u_{r'}}
ight) \right| - \ell(\mathbf{r}, \mathbf{r}')
ight]^2$$

At a given composition $\,c=(2N)^{-1}\sum_{{f r}}(1+\sigma_{{f r}})\,$

what patterns dominate at equilibrium?

Monte Carlo simulations reveal intriguing phase behavior

Sample equilibrium distribution $P[\{\sigma\}, \{\mathbf{u}\}] \propto e^{-\beta \mathcal{H}}$ of atoms on a periodic, two-dimensional, triangular lattice.

high *T, c*=1/2

lower *T, c*=1/2

Monte Carlo simulations reveal intriguing phase behavior

Can a simple theory predict the phase diagram?

Constructing an effective Hamiltonian

Life is easier if we write down an effective, spin-only Hamiltonian.

1) Go to Fourier Space:

$$\mathcal{H} = \frac{K}{2N} \sum_{q} \left[\hat{\mathbf{u}}_{q} \cdot \mathbf{F} \cdot \hat{\mathbf{u}}_{-q} + \Delta^{2} \left(\sum_{\alpha} g_{\alpha} \right) \hat{\sigma}_{q} \hat{\sigma}_{-q} - \Delta \left(\mathbf{h} \cdot \hat{\mathbf{u}}_{q} \hat{\sigma}_{-q} - \mathbf{h} \cdot \hat{\mathbf{u}}_{-q} \hat{\sigma}_{q} \right) \right]$$

Constructing an effective Hamiltonian

Life is easier if we write down an effective, spin-only Hamiltonian.

2) Integrate out displacement fluctuations:

$$e^{-\beta \mathcal{H}_{\text{eff}}(\{\hat{\sigma}_q\})} = \int \prod_q d\hat{\mathbf{u}}_q e^{-\beta \mathcal{H}(\{\hat{\mathbf{u}}_q\}, \{\hat{\sigma}_q\})} \implies \mathcal{H}_{\text{eff}}(\{\hat{\sigma}_q\}) = \frac{1}{N} \sum_q |\hat{\sigma}_q|^2 \hat{V}_{\text{eff}}(\mathbf{q})$$

Constructing an effective Hamiltonian

Life is easier if we write down an effective, spin-only Hamiltonian.

3) Transform back to real space:

$$\mathcal{H}_{\text{eff}}(\{\sigma_r\}) = \sum_{r,r'} V_{\text{eff}}(\mathbf{r} - \mathbf{r}') \sigma_r \sigma_{r'} \qquad V_{\text{eff}}(\mathbf{r}) = \frac{1}{N} \sum_q \hat{V}_{\text{eff}}(\mathbf{q}) e^{-i\mathbf{q}\cdot\mathbf{r}}$$

Mean Field Theory

Fix composition and predict sublattice ordering.

Sublattice $\alpha = 1,2,3$

Optimize parameters of an uncorrelated reference system,

$$\mathcal{H}_0 = -\sum_{\alpha} h_{\alpha} \sum_{r} {}^{(\alpha)} \sigma_r$$

which yields self-consistent equations for sublattice compositions.

Mean field theory predicts superlattice transition

What about coexistence?

The free energy cost of elastic coexistence is extensive

vapor

Free energy of coexistence is proportional to the **area** of the interface.

Neither bulk phase is content with lattice dimensions. Cost of coexistence is proportional to **volume**.

A graphical "quadratic construction" can account for elastic coexistence

$$\frac{F}{N} = f(c_1) - \frac{\Delta c_1}{\Delta c_2 - \Delta c_1} (f(\Delta c_2) - f(\Delta c_1))$$
$$\Delta c_1 = c - c_1 \qquad \Delta c_2 = c - c_2$$

A graphical "quadratic construction" can account for elastic coexistence

$$\frac{F}{N} = f(c_1) - \frac{\Delta c_1}{\Delta c_2 - \Delta c_1} (f(\Delta c_2) - f(\Delta c_1)) + Y\Delta l^2 \Delta c_1 \Delta c_2$$
$$\Delta c_1 = c - c_1 \qquad \Delta c_2 = c - c_2$$

A graphical "quadratic construction" can account for elastic coexistence

Phase diagram captures patterns observed in simulations

Monte Carlo phase diagram is more complex

What about the nanocrystal?

Equilibrium:

Nonequilibrium:

Free surface relieves strain.

Surface exchange: k_{ex} Bulk diffusion: k_{diff}

Conclusion

- Lattice mismatch induces rich phase behavior.
- A "quadratic construction" accounts for the extensive cost of elastic phase separation.
- Nanoscale ion exchange reactions are significantly influenced by both bulk phase behavior and kinetics.

Future Work:

- Thoroughly characterize kinetics.
- Explore the interplay between elastic interactions and local chemistry.
- Extend results to three dimensions.

Acknowledgements

Phillip Geissler Christoph Dellago Geissler Group

Mean Field Theory, Part II

Fix composition and predict sublattice ordering.

$$\mathcal{H} = \sum_{r,r'\neq r} \sigma_r V_{r-r'} \sigma_{r'}, \qquad \mathcal{H}_0 = -\sum_{\alpha} h_{\alpha} \sum_{r} {}^{(\alpha)} \sigma_r$$

Constraint:
$$\bar{m} = 2c - 1 = \frac{1}{N} \sum_{r} \sigma_r$$

Mean Field Theory, Part II

Handle constraint with Lagrange multiplier μ :

$$Q_0 = e^{-\beta\mu N\bar{m}} \prod_{\alpha} \prod_{r} {}^{(\alpha)} 2 \cosh \beta (\mu + h_{\alpha})$$
$$m_{\alpha} = \tanh \beta (\mu + h_{\alpha})$$

Apply variational procedure to obtain self-consistent equations for the sublattice magnetizations.

$$m_{\alpha} = \tanh \beta \left(\mu - \frac{2}{N_{\alpha}} \sum_{\gamma} m_{\gamma} J_{\alpha\gamma} \right)$$

$$\bar{m} = \sum_{\alpha} m_{\alpha} x_{\alpha}$$

Solve these equations numerically for a given composition and compute difference of sublattice magnetizations, $\Delta m = m_1 - m_2$.