Modulated order and unconventional coexistence in a model of lattice-mismatched solids

Layne Frechette APS March Meeting March 6th, 2019

Cation exchange produces patterned nanocrystal heterostructures

Cation exchange produces patterned nanocrystal heterostructures

Elastic strain plays an important role

How does lattice mismatch mediate interactions between atoms?

Are these patterns metastable or at equilibrium?

A simple model describes mechanical and compositional fluctuations

$$\mathcal{H} = (K/2) \sum_{\mathbf{R}, \hat{\alpha}} [|a\hat{\alpha} + \mathbf{u}_{\mathbf{R}} - \mathbf{u}_{\mathbf{R} + a\hat{\alpha}}| - l(\sigma_{\mathbf{R}}, \sigma_{\mathbf{R} + a\hat{\alpha}})]^2$$

Elastic strain is encoded in displacement field u_R .

Bond length depends on atom type σ_R , which couples strain to local composition.

L.B. Frechette, C. Dellago, P.L. Geissler, in preparation.

Monte Carlo simulations reveal intriguing phase behavior

Strain energetics are captured by an effective potential

$$\mathcal{H}_{ ext{eff}} = \sum_{\mathbf{R}, \mathbf{R}'
eq \mathbf{R}} V_{\mathbf{R}, \mathbf{R}'} \sigma_{\mathbf{R}} \sigma_{\mathbf{R}'}$$

Mean field theory predicts superlattice transition

The free energy cost of elastic coexistence is extensive

Cost of deforming domain to fit in box: $E = Y(L - L_0)^2$

A graphical "quadratic" construction can account for elastic coexistence

A graphical "quadratic" construction can account for elastic coexistence

Phase diagram captures patterns observed in simulations

What about the nanocrystal?

Equilibrium:

Nonequilibrium:

Free surface relieves strain.

Surface exchange: k_{ex} Bulk diffusion: k_{diff}

Conclusion

- Elastic interactions due to lattice mismatch induce rich phase behavior.
- A "quadratic construction" accounts for the extensive cost of elastic phase separation.
- Nanoscale ion exchange reactions are significantly influenced by both bulk phase behavior and kinetics.

Future Work:

- Characterize influence of factors like temperature on kinetics.
- Explore the interplay between elastic interactions and local chemistry.
- Extend results to three dimensions.

Acknowledgements

Phillip Geissler Christoph Dellago Geissler Group

Mean Field Theory, Part II

Fix composition and predict sublattice ordering.

$$\mathcal{H} = \sum_{r,r'\neq r} \sigma_r V_{r-r'} \sigma_{r'}, \qquad \mathcal{H}_0 = -\sum_{\alpha} h_{\alpha} \sum_{r} {}^{(\alpha)} \sigma_r$$

Constraint:
$$\bar{m} = 2c - 1 = \frac{1}{N} \sum_{r} \sigma_r$$

Mean Field Theory, Part II

Handle constraint with Lagrange multiplier μ :

$$Q_0 = e^{-\beta\mu N\bar{m}} \prod_{\alpha} \prod_{r} {}^{(\alpha)} 2 \cosh \beta (\mu + h_{\alpha})$$
$$m_{\alpha} = \tanh \beta (\mu + h_{\alpha})$$

Apply variational procedure to obtain self-consistent equations for the sublattice magnetizations.

$$m_{\alpha} = \tanh \beta \left(\mu - \frac{2}{N_{\alpha}} \sum_{\gamma} m_{\gamma} J_{\alpha\gamma} \right)$$

$$\bar{m} = \sum_{\alpha} m_{\alpha} x_{\alpha}$$

Solve these equations numerically for a given composition and compute difference of sublattice magnetizations, $\Delta m = m_1 - m_2$.

Phase diagram captures patterns observed in simulations

